
NunyaOS 
Week 10



Updates
- Changed mouse cursor to a pointer design (Alex)

- Design run() syscall (everyone)

- Implemented run() and other process lifecycle syscalls (Zach, Shuyang)

- Decided on file organization for syscalls (Shuyang, Kyle, Ryan)

- Implemented file system syscalls (Ryan, Jesse)

- Discussed Window concurrency issues (Kyle, Alex)

- Implemented User event distribution (Kyle, Alex)

- Bug fixes (Jesse, Alex)



- One syscall that does everything
- Takes a descriptor for a kernel-managed permissions template
- Todo: implement a suite of syscalls to create, edit these templates
- Use a global kernel descriptor table to keep track of the templates

- Question on how to implement this – see end

- Permissions for each module:
- Memory: a number of allowed pages
- Fs: a list of directories/files that are allowed
- Window: { max_width, max_height, origin (offset_x, offset_y) }

Run() syscall



- Syscall.h contains all syscall numbers 

and the syscall prototype, and 

#include’s all sys_module.h files

- Sys_module.h contains inline syscall 

functions the user can access for the 

module

- syscall_handler_module.h/c contains 

handlers for syscalls per module

File organization



FS Syscalls

- PR is up, blocked due to other recent design decisions
- File structure of code
- Current implementation of run

- Lots of participation in CRs, design decision 
- Jesse begins work on OS open file table
- Ryan begins work on code re-organization, interface with run



Window concurrency issues

- Decision between making all draw calls atomic and tightly coupling 
plot_pixel to a window

- Performance concerns with atomic draws -- unresponsive system?
- Leaning towards coupling plot_pixel to a window

- Windows can track their offset and absolute bounding box 



Event queue
- Keyboard and Mouse 

Interrupts create 
events

- Currently, mouse move 
and keyboard press

- These events are 
passed into a queue in 
each window, which 
each process reads 
from

- Processes poll events 
from their queue to 
react to



Bug fixes

- [NUN-20] CAPS LOCK simulates shift
- [NUN-31] 'W' cannot be typed
- Basekernel -> Nunya
- Mouse bug when redrawing near edge



- Finish run() syscall (and permissions templates syscalls)

- Implement syscalls for each module

- Write a few user programs

Future Plan



Questions
- Avoiding circular #includes in syscall.h - is this the best approach?

- Syscall.h #include’s sys_process.h at the end

- Sys_process.h uses syscall() but never includes syscall.h

- Users only #include’s syscall.h, never sys_process.h

- How to implement permissions descriptor table

- Dynamically or statically allocate?

- If dynamic, how to do so without it counting toward a process’ 

limit?


